A note on infinite antichain density

Let \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite an...

Full description

Bibliographic Details
Main Authors: Balister, P, Powierski, E, Scott, A, Tan, J
Format: Journal article
Language:English
Published: Society for Industrial and Applied Mathematics 2022
_version_ 1797106477168590848
author Balister, P
Powierski, E
Scott, A
Tan, J
author_facet Balister, P
Powierski, E
Scott, A
Tan, J
author_sort Balister, P
collection OXFORD
description Let \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite antichain \scrF of finite subsets of \BbbN such that | \scrF \cap 2 [n] | \geq fn for all n \geq n0. It follows that for any \varepsilon > 0 there exists an antichain \scrF \subseteq 2 \BbbN such that lim infn\rightarrow \infty | \scrF \cap 2 [n] | \cdot \bigl( 2 n n log1+\varepsilon n \bigr) - 1 > 0. This resolves a problem of Sudakov, Tomon, and Wagner in a strong form and is essentially tight.
first_indexed 2024-03-07T07:03:04Z
format Journal article
id oxford-uuid:5285f76f-4e43-4242-af4c-be24ddf707b8
institution University of Oxford
language English
last_indexed 2024-03-07T07:03:04Z
publishDate 2022
publisher Society for Industrial and Applied Mathematics
record_format dspace
spelling oxford-uuid:5285f76f-4e43-4242-af4c-be24ddf707b82022-04-07T08:05:59ZA note on infinite antichain densityJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5285f76f-4e43-4242-af4c-be24ddf707b8EnglishSymplectic ElementsSociety for Industrial and Applied Mathematics2022Balister, PPowierski, EScott, ATan, JLet \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite antichain \scrF of finite subsets of \BbbN such that | \scrF \cap 2 [n] | \geq fn for all n \geq n0. It follows that for any \varepsilon > 0 there exists an antichain \scrF \subseteq 2 \BbbN such that lim infn\rightarrow \infty | \scrF \cap 2 [n] | \cdot \bigl( 2 n n log1+\varepsilon n \bigr) - 1 > 0. This resolves a problem of Sudakov, Tomon, and Wagner in a strong form and is essentially tight.
spellingShingle Balister, P
Powierski, E
Scott, A
Tan, J
A note on infinite antichain density
title A note on infinite antichain density
title_full A note on infinite antichain density
title_fullStr A note on infinite antichain density
title_full_unstemmed A note on infinite antichain density
title_short A note on infinite antichain density
title_sort note on infinite antichain density
work_keys_str_mv AT balisterp anoteoninfiniteantichaindensity
AT powierskie anoteoninfiniteantichaindensity
AT scotta anoteoninfiniteantichaindensity
AT tanj anoteoninfiniteantichaindensity
AT balisterp noteoninfiniteantichaindensity
AT powierskie noteoninfiniteantichaindensity
AT scotta noteoninfiniteantichaindensity
AT tanj noteoninfiniteantichaindensity