A note on infinite antichain density
Let \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite an...
Main Authors: | , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Society for Industrial and Applied Mathematics
2022
|
_version_ | 1797106477168590848 |
---|---|
author | Balister, P Powierski, E Scott, A Tan, J |
author_facet | Balister, P Powierski, E Scott, A Tan, J |
author_sort | Balister, P |
collection | OXFORD |
description | Let \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap
2
[n]
| grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum
of positive integers satisfying
\infty
n=n0
fn/2
n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite antichain \scrF of finite subsets of
\BbbN such that | \scrF \cap 2
[n]
| \geq fn for all n \geq n0. It follows that for any \varepsilon > 0 there exists an antichain
\scrF \subseteq 2
\BbbN such that lim infn\rightarrow \infty | \scrF \cap 2
[n]
| \cdot \bigl(
2
n
n log1+\varepsilon n
\bigr) - 1 > 0. This resolves a problem of Sudakov,
Tomon, and Wagner in a strong form and is essentially tight. |
first_indexed | 2024-03-07T07:03:04Z |
format | Journal article |
id | oxford-uuid:5285f76f-4e43-4242-af4c-be24ddf707b8 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:03:04Z |
publishDate | 2022 |
publisher | Society for Industrial and Applied Mathematics |
record_format | dspace |
spelling | oxford-uuid:5285f76f-4e43-4242-af4c-be24ddf707b82022-04-07T08:05:59ZA note on infinite antichain densityJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5285f76f-4e43-4242-af4c-be24ddf707b8EnglishSymplectic ElementsSociety for Industrial and Applied Mathematics2022Balister, PPowierski, EScott, ATan, JLet \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite antichain \scrF of finite subsets of \BbbN such that | \scrF \cap 2 [n] | \geq fn for all n \geq n0. It follows that for any \varepsilon > 0 there exists an antichain \scrF \subseteq 2 \BbbN such that lim infn\rightarrow \infty | \scrF \cap 2 [n] | \cdot \bigl( 2 n n log1+\varepsilon n \bigr) - 1 > 0. This resolves a problem of Sudakov, Tomon, and Wagner in a strong form and is essentially tight. |
spellingShingle | Balister, P Powierski, E Scott, A Tan, J A note on infinite antichain density |
title | A note on infinite antichain density |
title_full | A note on infinite antichain density |
title_fullStr | A note on infinite antichain density |
title_full_unstemmed | A note on infinite antichain density |
title_short | A note on infinite antichain density |
title_sort | note on infinite antichain density |
work_keys_str_mv | AT balisterp anoteoninfiniteantichaindensity AT powierskie anoteoninfiniteantichaindensity AT scotta anoteoninfiniteantichaindensity AT tanj anoteoninfiniteantichaindensity AT balisterp noteoninfiniteantichaindensity AT powierskie noteoninfiniteantichaindensity AT scotta noteoninfiniteantichaindensity AT tanj noteoninfiniteantichaindensity |