A note on infinite antichain density
Let \scrF be an antichain of finite subsets of \BbbN . How quickly can the quantities | \scrF \cap 2 [n] | grow as n \rightarrow \infty ? We show that for any sequence (fn)n\geq n0 \sum of positive integers satisfying \infty n=n0 fn/2 n \leq 1/4 and fn \leq fn+1 \leq 2fn, there exists an infinite an...
Auteurs principaux: | Balister, P, Powierski, E, Scott, A, Tan, J |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Society for Industrial and Applied Mathematics
2022
|
Documents similaires
-
INFINITE ANTICHAINS IN SEMILATTICES
par: Lawson, J, et autres
Publié: (1985) -
INFINITE ANTICHAINS AND DUALITY THEORIES
par: Lawson, J, et autres
Publié: (1988) -
The chain covering number of a poset with no infinite antichains
par: Abraham, Uri, et autres
Publié: (2023-10-01) -
A note on operators of deletion and contraction for antichains
par: Andrey O. Matveev
Publié: (2002-01-01) -
Antichains of interval orders and semiorders, and Dilworth lattices of maximum size antichains
par: Engel Shaposhnik, Efrat
Publié: (2016)