Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
Hauptverfasser: | Curticapean, R, Dell, H, Roth, M |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer Nature
2018
|
Ähnliche Einträge
Ähnliche Einträge
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
von: Curticapean, R, et al.
Veröffentlicht: (2017) -
Parameterized counting of partially injective homomorphisms
von: Roth, M
Veröffentlicht: (2021) -
Counting, modular counting and graph homomorphisms
von: Magkakis, A
Veröffentlicht: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
von: Roth, M
Veröffentlicht: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
von: Focke, J, et al.
Veröffentlicht: (2021)