Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
Autori principali: | Curticapean, R, Dell, H, Roth, M |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Springer Nature
2018
|
Documenti analoghi
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
di: Curticapean, R, et al.
Pubblicazione: (2017) -
Parameterized counting of partially injective homomorphisms
di: Roth, M
Pubblicazione: (2021) -
Counting, modular counting and graph homomorphisms
di: Magkakis, A
Pubblicazione: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
di: Roth, M
Pubblicazione: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
di: Focke, J, et al.
Pubblicazione: (2021)