Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
主要な著者: | Curticapean, R, Dell, H, Roth, M |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2018
|
類似資料
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
著者:: Curticapean, R, 等
出版事項: (2017) -
Parameterized counting of partially injective homomorphisms
著者:: Roth, M
出版事項: (2021) -
Counting, modular counting and graph homomorphisms
著者:: Magkakis, A
出版事項: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
著者:: Roth, M
出版事項: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
著者:: Focke, J, 等
出版事項: (2021)