Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
Asıl Yazarlar: | Curticapean, R, Dell, H, Roth, M |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer Nature
2018
|
Benzer Materyaller
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
Yazar:: Curticapean, R, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Parameterized counting of partially injective homomorphisms
Yazar:: Roth, M
Baskı/Yayın Bilgisi: (2021) -
Counting, modular counting and graph homomorphisms
Yazar:: Magkakis, A
Baskı/Yayın Bilgisi: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
Yazar:: Roth, M
Baskı/Yayın Bilgisi: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
Yazar:: Focke, J, ve diğerleri
Baskı/Yayın Bilgisi: (2021)