Efficient discriminative learning of parametric nearest neighbor classifiers
Linear SVMs are efficient in both training and testing, however the data in real applications is rarely linearly separable. Non-linear kernel SVMs are too computationally intensive for applications with large-scale data sets. Recently locally linear classifiers have gained popularity due to their ef...
المؤلفون الرئيسيون: | Zhang, Z, Sturgess, P, Sengupta, S, Crook, N, Torr, PHS |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
IEEE
2012
|
مواد مشابهة
-
An invariant large margin nearest neighbour classifier
حسب: Kumar, MP, وآخرون
منشور في: (2007) -
Secure k -ish Nearest Neighbors Classifier
حسب: Shaul, Hayim, وآخرون
منشور في: (2021) -
A pre-averaged pseudo nearest neighbor classifier
حسب: Dapeng Li
منشور في: (2024-08-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
حسب: Badruz Zaman, وآخرون
منشور في: (2016-01-01) -
Dynamic Nearest Neighbor: An Improved Machine Learning Classifier and Its Application in Finances
حسب: Oscar Camacho-Urriolagoitia, وآخرون
منشور في: (2021-09-01)