Efficient discriminative learning of parametric nearest neighbor classifiers
Linear SVMs are efficient in both training and testing, however the data in real applications is rarely linearly separable. Non-linear kernel SVMs are too computationally intensive for applications with large-scale data sets. Recently locally linear classifiers have gained popularity due to their ef...
Hlavní autoři: | Zhang, Z, Sturgess, P, Sengupta, S, Crook, N, Torr, PHS |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2012
|
Podobné jednotky
-
An invariant large margin nearest neighbour classifier
Autor: Kumar, MP, a další
Vydáno: (2007) -
Secure k -ish Nearest Neighbors Classifier
Autor: Shaul, Hayim, a další
Vydáno: (2021) -
A pre-averaged pseudo nearest neighbor classifier
Autor: Dapeng Li
Vydáno: (2024-08-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
Autor: Badruz Zaman, a další
Vydáno: (2016-01-01) -
Dynamic Nearest Neighbor: An Improved Machine Learning Classifier and Its Application in Finances
Autor: Oscar Camacho-Urriolagoitia, a další
Vydáno: (2021-09-01)