CGIHT: Conjugate Gradient Iterative Hard Thresholding for Compressed Sensing and Matrix Completion

We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for the efficient solution of constrained underdetermined linear systems of equations arising in compressed sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per...

全面介紹

書目詳細資料
Main Authors: Tanner, J, Blanchard, J, Wei, K
格式: Journal article
出版: 2015
實物特徵
總結:We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for the efficient solution of constrained underdetermined linear systems of equations arising in compressed sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per iteration complexity of simple hard thresholding algorithms with the fast asymptotic convergence rate of employing the conjugate gradient method. We establish provable recovery guarantees and stability to noise for variants of CGIHT with sufficient conditions in terms of the restricted isometry constants of the sensing operators. Extensive empirical performance comparisons establish significant computational advantages for CGIHT both in terms of the size of problems which can be accurately approximated and in terms of overall computation time.