The Orbit Problem for parametric linear dynamical systems

We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or m...

Full description

Bibliographic Details
Main Authors: Baier, C, Jantsch, S, Lefaucheux, E, Ouaknine, J, Whiteland, MA, Funke, F, Karimov, T, Luca, F, Purser, D, Worrell, J
Format: Conference item
Language:English
Published: Dagstuhl Research Online Publication Server 2021
_version_ 1797068784595369984
author Baier, C
Jantsch, S
Lefaucheux, E
Ouaknine, J
Whiteland, MA
Funke, F
Karimov, T
Luca, F
Purser, D
Worrell, J
author_facet Baier, C
Jantsch, S
Lefaucheux, E
Ouaknine, J
Whiteland, MA
Funke, F
Karimov, T
Luca, F
Purser, D
Worrell, J
author_sort Baier, C
collection OXFORD
description We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.
first_indexed 2024-03-06T22:15:06Z
format Conference item
id oxford-uuid:5320ba64-e6a7-4bfa-b1a2-ac814c2a3628
institution University of Oxford
language English
last_indexed 2024-03-06T22:15:06Z
publishDate 2021
publisher Dagstuhl Research Online Publication Server
record_format dspace
spelling oxford-uuid:5320ba64-e6a7-4bfa-b1a2-ac814c2a36282022-03-26T16:29:40ZThe Orbit Problem for parametric linear dynamical systemsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:5320ba64-e6a7-4bfa-b1a2-ac814c2a3628EnglishSymplectic ElementsDagstuhl Research Online Publication Server2021Baier, CJantsch, SLefaucheux, EOuaknine, JWhiteland, MAFunke, FKarimov, TLuca, FPurser, DWorrell, JWe study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.
spellingShingle Baier, C
Jantsch, S
Lefaucheux, E
Ouaknine, J
Whiteland, MA
Funke, F
Karimov, T
Luca, F
Purser, D
Worrell, J
The Orbit Problem for parametric linear dynamical systems
title The Orbit Problem for parametric linear dynamical systems
title_full The Orbit Problem for parametric linear dynamical systems
title_fullStr The Orbit Problem for parametric linear dynamical systems
title_full_unstemmed The Orbit Problem for parametric linear dynamical systems
title_short The Orbit Problem for parametric linear dynamical systems
title_sort orbit problem for parametric linear dynamical systems
work_keys_str_mv AT baierc theorbitproblemforparametriclineardynamicalsystems
AT jantschs theorbitproblemforparametriclineardynamicalsystems
AT lefaucheuxe theorbitproblemforparametriclineardynamicalsystems
AT ouakninej theorbitproblemforparametriclineardynamicalsystems
AT whitelandma theorbitproblemforparametriclineardynamicalsystems
AT funkef theorbitproblemforparametriclineardynamicalsystems
AT karimovt theorbitproblemforparametriclineardynamicalsystems
AT lucaf theorbitproblemforparametriclineardynamicalsystems
AT purserd theorbitproblemforparametriclineardynamicalsystems
AT worrellj theorbitproblemforparametriclineardynamicalsystems
AT baierc orbitproblemforparametriclineardynamicalsystems
AT jantschs orbitproblemforparametriclineardynamicalsystems
AT lefaucheuxe orbitproblemforparametriclineardynamicalsystems
AT ouakninej orbitproblemforparametriclineardynamicalsystems
AT whitelandma orbitproblemforparametriclineardynamicalsystems
AT funkef orbitproblemforparametriclineardynamicalsystems
AT karimovt orbitproblemforparametriclineardynamicalsystems
AT lucaf orbitproblemforparametriclineardynamicalsystems
AT purserd orbitproblemforparametriclineardynamicalsystems
AT worrellj orbitproblemforparametriclineardynamicalsystems