Self-supervised multi-task representation learning for sequential medical images
Self-supervised representation learning has achieved promising results for downstream visual tasks in natural images. However, its use in the medical domain, where there is an underlying anatomical structural similarity, remains underexplored. To address this shortcoming, we propose a self-supervise...
Hlavní autoři: | Dong, N, Kampffmeyer, M, Voiculescu, I |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer
2021
|
Podobné jednotky
-
Federated partially supervised learning with limited decentralized medical images
Autor: Dong, N, a další
Vydáno: (2022) -
Towards robust partially supervised multi-structure medical image segmentation on small-scale data
Autor: Dong, N, a další
Vydáno: (2021) -
Learning underrepresented classes from decentralized partially labeled medical images
Autor: Dong, N, a další
Vydáno: (2022) -
Multi-task self-supervised visual learning
Autor: Doersch, C, a další
Vydáno: (2017) -
Self-Supervised Learning for Invariant Representations From Multi-Spectral and SAR Images
Autor: Pallavi Jain, a další
Vydáno: (2022-01-01)