Self-supervised multi-task representation learning for sequential medical images
Self-supervised representation learning has achieved promising results for downstream visual tasks in natural images. However, its use in the medical domain, where there is an underlying anatomical structural similarity, remains underexplored. To address this shortcoming, we propose a self-supervise...
Asıl Yazarlar: | Dong, N, Kampffmeyer, M, Voiculescu, I |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer
2021
|
Benzer Materyaller
-
Federated partially supervised learning with limited decentralized medical images
Yazar:: Dong, N, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Towards robust partially supervised multi-structure medical image segmentation on small-scale data
Yazar:: Dong, N, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Learning underrepresented classes from decentralized partially labeled medical images
Yazar:: Dong, N, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Multi-task self-supervised visual learning
Yazar:: Doersch, C, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Self-Supervised Learning for Invariant Representations From Multi-Spectral and SAR Images
Yazar:: Pallavi Jain, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01)