Efficient additive kernels via explicit feature maps
Large scale nonlinear support vector machines (SVMs) can be approximated by linear ones using a suitable feature map. The linear SVMs are in general much faster to learn and evaluate (test) than the original nonlinear SVMs. This work introduces explicit feature maps for the additive class of kernels...
Main Authors: | Vedaldi, A, Zisserman, A |
---|---|
格式: | Journal article |
语言: | English |
出版: |
IEEE
2012
|
相似书籍
-
Sparse kernel approximations for efficient classification and detection
由: Vedaldi, A, et al.
出版: (2012) -
Sparse Kernel Approximations for Efficient Classification and Detection
由: Vedaldi, A, et al.
出版: (2012) -
Generalized RBF feature maps for efficient detection
由: Vempati, S, et al.
出版: (2010) -
Multiple kernels for object detection
由: Vedaldi, A, et al.
出版: (2010) -
Domain adaption via feature selection on explicit feature map
由: Deng, Wan-Yu, et al.
出版: (2020)