Multi-level Monte Carlo path simulation

We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achiev...

全面介绍

书目详细资料
主要作者: Giles, M
格式: Report
出版: Unspecified 2006
实物特征
总结:We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achieve an accuracy of $O(\epsilon)$ is reduced from $O(\epsilon^{-3})$ to $O(\epsilon^{-2} (\log \epsilon)^2)$. The analysis is supported by numerical results showing significant computational savings.