Multi-level Monte Carlo path simulation

We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achiev...

Celý popis

Podrobná bibliografie
Hlavní autor: Giles, M
Médium: Report
Vydáno: Unspecified 2006
_version_ 1826272748881575936
author Giles, M
author_facet Giles, M
author_sort Giles, M
collection OXFORD
description We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achieve an accuracy of $O(\epsilon)$ is reduced from $O(\epsilon^{-3})$ to $O(\epsilon^{-2} (\log \epsilon)^2)$. The analysis is supported by numerical results showing significant computational savings.
first_indexed 2024-03-06T22:17:30Z
format Report
id oxford-uuid:53e4f4f5-bf70-4c2f-aa8c-09b607e6c7f2
institution University of Oxford
last_indexed 2024-03-06T22:17:30Z
publishDate 2006
publisher Unspecified
record_format dspace
spelling oxford-uuid:53e4f4f5-bf70-4c2f-aa8c-09b607e6c7f22022-03-26T16:34:29ZMulti-level Monte Carlo path simulationReporthttp://purl.org/coar/resource_type/c_93fcuuid:53e4f4f5-bf70-4c2f-aa8c-09b607e6c7f2Mathematical Institute - ePrintsUnspecified2006Giles, MWe show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achieve an accuracy of $O(\epsilon)$ is reduced from $O(\epsilon^{-3})$ to $O(\epsilon^{-2} (\log \epsilon)^2)$. The analysis is supported by numerical results showing significant computational savings.
spellingShingle Giles, M
Multi-level Monte Carlo path simulation
title Multi-level Monte Carlo path simulation
title_full Multi-level Monte Carlo path simulation
title_fullStr Multi-level Monte Carlo path simulation
title_full_unstemmed Multi-level Monte Carlo path simulation
title_short Multi-level Monte Carlo path simulation
title_sort multi level monte carlo path simulation
work_keys_str_mv AT gilesm multilevelmontecarlopathsimulation