Hashing embeddings of optimal dimension, with applications to linear least squares
The aim of this paper is two-fold: firstly, to present subspace embedding properties for s-hashing sketching matrices, with s ≥ 1, that are optimal in the projection dimension m of the sketch, namely, m = O(d), where d is the dimension of the subspace. A diverse set of results are presented that add...
Автори: | Cartis, C, Fiala, J, Shao, Z |
---|---|
Формат: | Internet publication |
Мова: | English |
Опубліковано: |
2021
|
Схожі ресурси
Схожі ресурси
-
Trust-region and other regularisations of linear least-squares problems
за авторством: Cartis, C, та інші
Опубліковано: (2008) -
Trust-region and other regularisations of linear least-squares problems
за авторством: Cartis, C, та інші
Опубліковано: (2009) -
Scalable subspace methods for derivative-free nonlinear least-squares optimization
за авторством: Cartis, C, та інші
Опубліковано: (2022) -
Linear least-squares estimation /
за авторством: Kailath, Thomas
Опубліковано: (1977) -
Linear least squares computations /
за авторством: 213981 Farebrother, R. W.
Опубліковано: (1988)