Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.
Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of...
Main Authors: | Mok, S, Ashley, E, Ferreira, P, Zhu, L, Lin, Z, Yeo, T, Chotivanich, K, Imwong, M, Pukrittayakamee, S, Dhorda, M, Nguon, C, Lim, P, Amaratunga, C, Suon, S, Hien, T, Htut, Y, Faiz, M, Onyamboko, M, Mayxay, M, Newton, P, Tripura, R, Woodrow, C, Miotto, O, Kwiatkowski, D, Nosten, F |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2015
|
Similar Items
-
Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
by: Mok, S., et al.
Published: (2016) -
Spread of artemisinin resistance in Plasmodium falciparum malaria.
by: Ashley, E, et al.
Published: (2014) -
Genetic architecture of artemisinin-resistant Plasmodium falciparum
by: Miotto, O, et al.
Published: (2015) -
Host immunity and the assessment of emerging artemisinin resistance in a multinational cohort
by: Ataide, R, et al.
Published: (2017) -
Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia.
by: Miotto, O, et al.
Published: (2013)