Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
المؤلفون الرئيسيون: | Tolpin, D, Wood, F |
---|---|
التنسيق: | Conference item |
منشور في: |
AAAI Publications
2015
|
مواد مشابهة
-
Black-box policy search with probabilistic programs
حسب: Van De Meent, J, وآخرون
منشور في: (2016) -
Maximum a-Posteriori estimation of random fields.
منشور في: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
حسب: Rezek, I, وآخرون
منشور في: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
حسب: Nizar Altounji, وآخرون
منشور في: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
حسب: Tolpin, D, وآخرون
منشور في: (2015)