Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Auteurs principaux: | Tolpin, D, Wood, F |
---|---|
Format: | Conference item |
Publié: |
AAAI Publications
2015
|
Documents similaires
-
Black-box policy search with probabilistic programs
par: Van De Meent, J, et autres
Publié: (2016) -
Maximum a-Posteriori estimation of random fields.
Publié: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
par: Rezek, I, et autres
Publié: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
par: Nizar Altounji, et autres
Publié: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
par: Tolpin, D, et autres
Publié: (2015)