Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Autori principali: | Tolpin, D, Wood, F |
---|---|
Natura: | Conference item |
Pubblicazione: |
AAAI Publications
2015
|
Documenti analoghi
Documenti analoghi
-
Black-box policy search with probabilistic programs
di: Van De Meent, J, et al.
Pubblicazione: (2016) -
Maximum a-Posteriori estimation of random fields.
Pubblicazione: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
di: Rezek, I, et al.
Pubblicazione: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
di: Nizar Altounji, et al.
Pubblicazione: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
di: Tolpin, D, et al.
Pubblicazione: (2015)