Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
主要な著者: | Tolpin, D, Wood, F |
---|---|
フォーマット: | Conference item |
出版事項: |
AAAI Publications
2015
|
類似資料
-
Black-box policy search with probabilistic programs
著者:: Van De Meent, J, 等
出版事項: (2016) -
Maximum a-Posteriori estimation of random fields.
出版事項: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
著者:: Rezek, I, 等
出版事項: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
著者:: Nizar Altounji, 等
出版事項: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
著者:: Tolpin, D, 等
出版事項: (2015)