Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Үндсэн зохиолчид: | Tolpin, D, Wood, F |
---|---|
Формат: | Conference item |
Хэвлэсэн: |
AAAI Publications
2015
|
Ижил төстэй зүйлс
-
Black-box policy search with probabilistic programs
-н: Van De Meent, J, зэрэг
Хэвлэсэн: (2016) -
Maximum a-Posteriori estimation of random fields.
Хэвлэсэн: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
-н: Rezek, I, зэрэг
Хэвлэсэн: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
-н: Nizar Altounji, зэрэг
Хэвлэсэн: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
-н: Tolpin, D, зэрэг
Хэвлэсэн: (2015)