Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Principais autores: | Tolpin, D, Wood, F |
---|---|
Formato: | Conference item |
Publicado em: |
AAAI Publications
2015
|
Registros relacionados
-
Black-box policy search with probabilistic programs
por: Van De Meent, J, et al.
Publicado em: (2016) -
Maximum a-Posteriori estimation of random fields.
Publicado em: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
por: Rezek, I, et al.
Publicado em: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
por: Nizar Altounji, et al.
Publicado em: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
por: Tolpin, D, et al.
Publicado em: (2015)