Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Asıl Yazarlar: | Tolpin, D, Wood, F |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
AAAI Publications
2015
|
Benzer Materyaller
-
Black-box policy search with probabilistic programs
Yazar:: Van De Meent, J, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Maximum a-Posteriori estimation of random fields.
Baskı/Yayın Bilgisi: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
Yazar:: Rezek, I, ve diğerleri
Baskı/Yayın Bilgisi: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
Yazar:: Nizar Altounji, ve diğerleri
Baskı/Yayın Bilgisi: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
Yazar:: Tolpin, D, ve diğerleri
Baskı/Yayın Bilgisi: (2015)