The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1.
The combinatorial interaction among transcription factors is believed to determine hematopoietic cell fate. Stem cell leukemia (SCL, also known as TAL1 [T-cell acute lymphoblastic leukemia 1]) is a tissue-specific basic helix-loop-helix (bHLH) factor that plays a central function in hematopoietic de...
Main Authors: | , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2002
|
_version_ | 1797069284280631296 |
---|---|
author | Lécuyer, E Herblot, S Saint-Denis, M Martin, R Begley, C Porcher, C Orkin, S Hoang, T |
author_facet | Lécuyer, E Herblot, S Saint-Denis, M Martin, R Begley, C Porcher, C Orkin, S Hoang, T |
author_sort | Lécuyer, E |
collection | OXFORD |
description | The combinatorial interaction among transcription factors is believed to determine hematopoietic cell fate. Stem cell leukemia (SCL, also known as TAL1 [T-cell acute lymphoblastic leukemia 1]) is a tissue-specific basic helix-loop-helix (bHLH) factor that plays a central function in hematopoietic development; however, its target genes and molecular mode of action remain to be elucidated. Here we show that SCL and the c-Kit receptor are coexpressed in hematopoietic progenitors at the single-cell level and that SCL induces c-kit in chromatin, as ectopic SCL expression in transgenic mice sustains c-kit transcription in developing B lymphocytes, in which both genes are normally down-regulated. Through transient transfection assays and coimmunoprecipitation of endogenous proteins, we define the role of SCL as a nucleation factor for a multifactorial complex (SCL complex) that specifically enhances c-kit promoter activity without affecting the activity of myelomonocytic promoters. This complex, containing hematopoietic-specific (SCL, Lim-only 2 (LMO2), GATA-1/GATA-2) and ubiquitous (E2A, LIM- domain binding protein 1 [Ldb-1]) factors, is tethered to DNA via a specificity protein 1 (Sp1) motif, through direct interactions between elements of the SCL complex and the Sp1 zinc finger protein. Furthermore, we demonstrate by chromatin immunoprecipitation that SCL, E2A, and Sp1 specifically co-occupy the c-kit promoter in vivo. We therefore conclude that c-kit is a direct target of the SCL complex. Proper activation of the c-kit promoter depends on the combinatorial interaction of all members of the complex. Since SCL is down-regulated in maturing cells while its partners remain expressed, our observations suggest that loss of SCL inactivates the SCL complex, which may be an important event in the differentiation of pluripotent hematopoietic cells. |
first_indexed | 2024-03-06T22:22:10Z |
format | Journal article |
id | oxford-uuid:556be185-9279-4c6e-8d24-7662696ba4ff |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:22:10Z |
publishDate | 2002 |
record_format | dspace |
spelling | oxford-uuid:556be185-9279-4c6e-8d24-7662696ba4ff2022-03-26T16:43:58ZThe SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:556be185-9279-4c6e-8d24-7662696ba4ffEnglishSymplectic Elements at Oxford2002Lécuyer, EHerblot, SSaint-Denis, MMartin, RBegley, CPorcher, COrkin, SHoang, TThe combinatorial interaction among transcription factors is believed to determine hematopoietic cell fate. Stem cell leukemia (SCL, also known as TAL1 [T-cell acute lymphoblastic leukemia 1]) is a tissue-specific basic helix-loop-helix (bHLH) factor that plays a central function in hematopoietic development; however, its target genes and molecular mode of action remain to be elucidated. Here we show that SCL and the c-Kit receptor are coexpressed in hematopoietic progenitors at the single-cell level and that SCL induces c-kit in chromatin, as ectopic SCL expression in transgenic mice sustains c-kit transcription in developing B lymphocytes, in which both genes are normally down-regulated. Through transient transfection assays and coimmunoprecipitation of endogenous proteins, we define the role of SCL as a nucleation factor for a multifactorial complex (SCL complex) that specifically enhances c-kit promoter activity without affecting the activity of myelomonocytic promoters. This complex, containing hematopoietic-specific (SCL, Lim-only 2 (LMO2), GATA-1/GATA-2) and ubiquitous (E2A, LIM- domain binding protein 1 [Ldb-1]) factors, is tethered to DNA via a specificity protein 1 (Sp1) motif, through direct interactions between elements of the SCL complex and the Sp1 zinc finger protein. Furthermore, we demonstrate by chromatin immunoprecipitation that SCL, E2A, and Sp1 specifically co-occupy the c-kit promoter in vivo. We therefore conclude that c-kit is a direct target of the SCL complex. Proper activation of the c-kit promoter depends on the combinatorial interaction of all members of the complex. Since SCL is down-regulated in maturing cells while its partners remain expressed, our observations suggest that loss of SCL inactivates the SCL complex, which may be an important event in the differentiation of pluripotent hematopoietic cells. |
spellingShingle | Lécuyer, E Herblot, S Saint-Denis, M Martin, R Begley, C Porcher, C Orkin, S Hoang, T The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title | The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title_full | The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title_fullStr | The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title_full_unstemmed | The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title_short | The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. |
title_sort | scl complex regulates c kit expression in hematopoietic cells through functional interaction with sp1 |
work_keys_str_mv | AT lecuyere thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT herblots thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT saintdenism thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT martinr thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT begleyc thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT porcherc thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT orkins thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT hoangt thesclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT lecuyere sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT herblots sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT saintdenism sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT martinr sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT begleyc sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT porcherc sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT orkins sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 AT hoangt sclcomplexregulatesckitexpressioninhematopoieticcellsthroughfunctionalinteractionwithsp1 |