The number of accessible paths in the hypercube

<p style="text-align:justify;"> Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube <math xmlns="http://www.w3.org/1998/Math/MathML"> <mo fence="false" stretchy="false">{</mo> <mn...

Full description

Bibliographic Details
Main Authors: Berestycki, J, Brunet, E, Shi, Z
Format: Journal article
Language:English
Published: Bernoulli Society for Mathematical Statistics and Probability 2015
Description
Summary:<p style="text-align:justify;"> Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube <math xmlns="http://www.w3.org/1998/Math/MathML"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mi>L</mi> </msup> </math> where each node carries an independent random variable uniformly distributed on [0,1], except (1,1,…,1) which carries the value 1 and (0,0,…,0) which carries the value x∈[0,1]. We study the number Θ of paths from vertex (0,0,…,0) to the opposite vertex (1,1,…,1) along which the values on the nodes form an increasing sequence. We show that if the value on (0,0,…,0) is set to <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mi>X</mi> <mo>/</mo> <mi>L</mi> </math> then <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi mathvariant="normal">Θ<!-- Θ --></mi> <mo>/</mo> <mi>L</mi> </math> converges in law as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </math> to e−X times the product of two standard independent exponential variables.<br/> As a first step in the analysis, we study the same question when the graph is that of a tree where the root has arity L, each node at level 1 has arity L−1, …, and the nodes at level L−1 have only one offspring which are the leaves of the tree (all the leaves are assigned the value 1, the root the value <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </math>. </p>