The number of accessible paths in the hypercube

<p style="text-align:justify;"> Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube <math xmlns="http://www.w3.org/1998/Math/MathML"> <mo fence="false" stretchy="false">{</mo> <mn...

Full description

Bibliographic Details
Main Authors: Berestycki, J, Brunet, E, Shi, Z
Format: Journal article
Language:English
Published: Bernoulli Society for Mathematical Statistics and Probability 2015
_version_ 1797106901621669888
author Berestycki, J
Brunet, E
Shi, Z
author_facet Berestycki, J
Brunet, E
Shi, Z
author_sort Berestycki, J
collection OXFORD
description <p style="text-align:justify;"> Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube <math xmlns="http://www.w3.org/1998/Math/MathML"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mi>L</mi> </msup> </math> where each node carries an independent random variable uniformly distributed on [0,1], except (1,1,…,1) which carries the value 1 and (0,0,…,0) which carries the value x∈[0,1]. We study the number Θ of paths from vertex (0,0,…,0) to the opposite vertex (1,1,…,1) along which the values on the nodes form an increasing sequence. We show that if the value on (0,0,…,0) is set to <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mi>X</mi> <mo>/</mo> <mi>L</mi> </math> then <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi mathvariant="normal">Θ<!-- Θ --></mi> <mo>/</mo> <mi>L</mi> </math> converges in law as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </math> to e−X times the product of two standard independent exponential variables.<br/> As a first step in the analysis, we study the same question when the graph is that of a tree where the root has arity L, each node at level 1 has arity L−1, …, and the nodes at level L−1 have only one offspring which are the leaves of the tree (all the leaves are assigned the value 1, the root the value <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </math>. </p>
first_indexed 2024-03-07T07:07:38Z
format Journal article
id oxford-uuid:5576e5e8-cc88-471c-9c75-5d46e90a564e
institution University of Oxford
language English
last_indexed 2024-03-07T07:07:38Z
publishDate 2015
publisher Bernoulli Society for Mathematical Statistics and Probability
record_format dspace
spelling oxford-uuid:5576e5e8-cc88-471c-9c75-5d46e90a564e2022-05-26T15:32:48ZThe number of accessible paths in the hypercubeJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5576e5e8-cc88-471c-9c75-5d46e90a564eEnglishSymplectic Elements at OxfordBernoulli Society for Mathematical Statistics and Probability2015Berestycki, JBrunet, EShi, Z <p style="text-align:justify;"> Motivated by an evolutionary biology question, we study the following problem: we consider the hypercube <math xmlns="http://www.w3.org/1998/Math/MathML"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mi>L</mi> </msup> </math> where each node carries an independent random variable uniformly distributed on [0,1], except (1,1,…,1) which carries the value 1 and (0,0,…,0) which carries the value x∈[0,1]. We study the number Θ of paths from vertex (0,0,…,0) to the opposite vertex (1,1,…,1) along which the values on the nodes form an increasing sequence. We show that if the value on (0,0,…,0) is set to <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mi>X</mi> <mo>/</mo> <mi>L</mi> </math> then <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi mathvariant="normal">Θ<!-- Θ --></mi> <mo>/</mo> <mi>L</mi> </math> converges in law as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </math> to e−X times the product of two standard independent exponential variables.<br/> As a first step in the analysis, we study the same question when the graph is that of a tree where the root has arity L, each node at level 1 has arity L−1, …, and the nodes at level L−1 have only one offspring which are the leaves of the tree (all the leaves are assigned the value 1, the root the value <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </math>. </p>
spellingShingle Berestycki, J
Brunet, E
Shi, Z
The number of accessible paths in the hypercube
title The number of accessible paths in the hypercube
title_full The number of accessible paths in the hypercube
title_fullStr The number of accessible paths in the hypercube
title_full_unstemmed The number of accessible paths in the hypercube
title_short The number of accessible paths in the hypercube
title_sort number of accessible paths in the hypercube
work_keys_str_mv AT berestyckij thenumberofaccessiblepathsinthehypercube
AT brunete thenumberofaccessiblepathsinthehypercube
AT shiz thenumberofaccessiblepathsinthehypercube
AT berestyckij numberofaccessiblepathsinthehypercube
AT brunete numberofaccessiblepathsinthehypercube
AT shiz numberofaccessiblepathsinthehypercube