Least-squares spectral methods for ODE eigenvalue problems
We develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strengt...
Autors principals: | Hashemi, B, Nakatsukasa, Y |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
Society for Industrial and Applied Mathematics
2022
|
Ítems similars
-
Stable polefinding and rational least-squares fitting via eigenvalues
per: Ito, S, et al.
Publicat: (2018) -
Rectangular eigenvalue problems
per: Hashemi, B, et al.
Publicat: (2022) -
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
per: Israa M. Salman, et al.
Publicat: (2020-10-01) -
The Least Eigenvalue of the Complement of the Square Power Graph of G
per: Lubna Gul, et al.
Publicat: (2021-01-01) -
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
per: Nakatsukasa, Y, et al.
Publicat: (2019)