Least-squares spectral methods for ODE eigenvalue problems
We develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strengt...
Huvudupphovsmän: | Hashemi, B, Nakatsukasa, Y |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Society for Industrial and Applied Mathematics
2022
|
Liknande verk
Liknande verk
-
Stable polefinding and rational least-squares fitting via eigenvalues
av: Ito, S, et al.
Publicerad: (2018) -
Rectangular eigenvalue problems
av: Hashemi, B, et al.
Publicerad: (2022) -
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
av: Israa M. Salman, et al.
Publicerad: (2020-10-01) -
The Least Eigenvalue of the Complement of the Square Power Graph of G
av: Lubna Gul, et al.
Publicerad: (2021-01-01) -
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
av: Nakatsukasa, Y, et al.
Publicerad: (2019)