Least-squares spectral methods for ODE eigenvalue problems
We develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strengt...
Asıl Yazarlar: | Hashemi, B, Nakatsukasa, Y |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Society for Industrial and Applied Mathematics
2022
|
Benzer Materyaller
-
Stable polefinding and rational least-squares fitting via eigenvalues
Yazar:: Ito, S, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Rectangular eigenvalue problems
Yazar:: Hashemi, B, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
Yazar:: Israa M. Salman, ve diğerleri
Baskı/Yayın Bilgisi: (2020-10-01) -
The Least Eigenvalue of the Complement of the Square Power Graph of G
Yazar:: Lubna Gul, ve diğerleri
Baskı/Yayın Bilgisi: (2021-01-01) -
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
Yazar:: Nakatsukasa, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2019)