On covering by translates of a set
In this paper we study the minimal number of translates of an arbitrary subset $S$ of a group $G$ needed to cover the group, and related notions of the efficiency of such coverings. We focus mainly on finite subsets in discrete groups, reviewing the classical results in this area, and generalizing t...
Auteurs principaux: | Bollobas, B, Janson, S, Riordan, O |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2009
|
Documents similaires
-
The cut metric, random graphs, and branching processes
par: Bollobas, B, et autres
Publié: (2009) -
The phase transition in the uniformly grown random graph has infinite order
par: Bollobas, B, et autres
Publié: (2005) -
Sparse random graphs with clustering
par: Bollobas, B, et autres
Publié: (2008) -
The phase transition in inhomogeneous random graphs
par: Bollobas, B, et autres
Publié: (2005) -
Line-of-sight percolation
par: Bollobas, B, et autres
Publié: (2007)