Homogenization of periodic systems with large potentials
We consider the homogenization of a system of second-order equations with a large potential in a periodic medium. Denoting by (Epsilon) the period, the potential is scaled as (Epsilon. Under a generic assumption on the spectral properties of the associated cell problem, we prove that the solution ca...
Auteurs principaux: | Capdeboscq, Y, Piatnitski, A, Allaire, G, Siess, V |
---|---|
Format: | Journal article |
Publié: |
Springer-Verlag
2004
|
Documents similaires
-
Homogenization and localization with an interface
par: Allaire, G, et autres
Publié: (2003) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
par: Allaire, G, et autres
Publié: (2002) -
Homogenization of a spectral problem in neutronic multigroup diffusion
par: Allaire, G, et autres
Publié: (2000) -
Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
par: Allaire, G, et autres
Publié: (2012) -
Homogenization of a diffusion equation with drift
par: Capdeboscq, Y
Publié: (1998)