Summary: | <p><strong>OBJECTIVE:</strong> The aim of this study was to test the hypothesis that white matter degeneration of the perforant path - as part of the Papez circuit - is a key feature of amyotrophic lateral sclerosis (ALS), even in the absence of frontotemporal dementia (FTD) or deposition of pTDP-43 inclusions in hippocampal granule cells.</p> <p><strong>METHODS:</strong> We used diffusion Magnetic Resonance Imaging (dMRI), polarized light imaging (PLI) and immunohistochemical analysis of post mortem hippocampus specimens from controls (n = 5) and ALS patients (n = 14) to study white matter degeneration in the perforant path.</p> <p><strong>RESULTS:</strong> diffusion Magnetic Resonance Imaging demonstrated a decrease in fractional anisotropy (P = 0.01) and an increase in mean diffusivity (P = 0.01) in the perforant path in ALS compared to controls. PLI-myelin density was lower in ALS (P = 0.05) and correlated with fractional anisotropy (r = 0.52, P = 0.03). These results were confirmed by immunohistochemistry; both myelin (proteolipid protein, P = 0.03) and neurofilaments (SMI-312, P = 0.02) were lower in ALS. Two out of the fourteen ALS cases showed pTDP-43 pathology in the dentate gyrus, but with comparable myelination levels in the perforant path to other ALS cases.</p> <p><strong>CONCLUSION:</strong> We conclude that degeneration of the perforant path occurs in ALS patients and that this may occur before, or independent of, pTDP-43 aggregation in the dentate gyrus of the hippocampus. Future research should focus on correlating the degree of cognitive decline to the amount of white matter atrophy in the perforant path.</p>
|