Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
Päätekijät: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Elsevier
2021
|
Samankaltaisia teoksia
-
Science with the Cherenkov Telescope Array
Tekijä: Acharya, B, et al.
Julkaistu: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
Tekijä: L. Olivera-Nieto, et al.
Julkaistu: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
Tekijä: Tibaldo, L, et al.
Julkaistu: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
Tekijä: L. Olivera-Nieto, et al.
Julkaistu: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
Tekijä: R. D. Parsons, et al.
Julkaistu: (2020-05-01)