Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
Auteurs principaux: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2021
|
Documents similaires
-
Science with the Cherenkov Telescope Array
par: Acharya, B, et autres
Publié: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
par: L. Olivera-Nieto, et autres
Publié: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
par: Tibaldo, L, et autres
Publié: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
par: L. Olivera-Nieto, et autres
Publié: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
par: R. D. Parsons, et autres
Publié: (2020-05-01)