Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
Main Authors: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
Elsevier
2021
|
Títulos similares
-
Science with the Cherenkov Telescope Array
por: Acharya, B, et al.
Publicado: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
por: L. Olivera-Nieto, et al.
Publicado: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
por: Tibaldo, L, et al.
Publicado: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
por: L. Olivera-Nieto, et al.
Publicado: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
por: R. D. Parsons, et al.
Publicado: (2020-05-01)