Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
Главные авторы: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Elsevier
2021
|
Схожие документы
-
Science with the Cherenkov Telescope Array
по: Acharya, B, и др.
Опубликовано: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
по: L. Olivera-Nieto, и др.
Опубликовано: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
по: Tibaldo, L, и др.
Опубликовано: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
по: L. Olivera-Nieto, и др.
Опубликовано: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
по: R. D. Parsons, и др.
Опубликовано: (2020-05-01)