GeV plasma accelerators driven in waveguides

During the last few years laser-driven plasma accelerators have been shown to generate quasi-monoenergetic electron beams with energies up to several hundred MeV. Extending the output energy of laser-driven plasma accelerators to the GeV range requires operation at plasma densities an order of magni...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Hooker, S, Brunetti, E, Esarey, E, Gallacher, J, Geddes, C, Gonsalves, A, Jaroszynski, D, Kamperidis, C, Kneip, S, Krushelnick, K, Leemans, W, Mangles, S, Murphy, C, Nagler, B, Najmudin, Z, Nakamura, K, Norreys, P, Panasenko, D, Rowlands-Rees, T, Schroeder, C, Toth, C, Trines, R
Định dạng: Conference item
Được phát hành: 2007
Miêu tả
Tóm tắt:During the last few years laser-driven plasma accelerators have been shown to generate quasi-monoenergetic electron beams with energies up to several hundred MeV. Extending the output energy of laser-driven plasma accelerators to the GeV range requires operation at plasma densities an order of magnitude lower, i.e. 10(18) cm(-3), and increasing the distance over which acceleration is maintained from a few millimetres to a few tens of millimetres. One approach for achieving this is to guide the driving laser pulse in the plasma channel formed in a gas-filled capillary discharge waveguide. We present transverse interferometric measurements of the evolution of the plasma channel formed and compare these measurements with models of the capillary discharge. We describe in detail experiments performed at Lawrence Berkeley National Laboratory and at Rutherford Appleton Laboratory in which plasma accelerators were driven within this type of waveguide to generate quasi-monoenergetic electron beams with energies up to I GeV.