Multiple RPAs make WRN syndrome protein a superhelicase

RPA is known to stimulate the helicase activity of Werner syndrome protein (WRN), but the exact stimulation mechanism is not understood. We use single-molecule FRET and magnetic tweezers to investigate the helicase activity of WRN and its stimulation by RPA. We show that WRN alone is a weak helicase...

Full description

Bibliographic Details
Main Authors: Lee, M, Shin, S, Uhm, H, Hong, H, Kirk, J, Hyun, K, Kulikowicz, T, Kim, J, Ahn, B, Bohr, V, Hohng, S
Format: Journal article
Language:English
Published: Oxford University Press 2018
Description
Summary:RPA is known to stimulate the helicase activity of Werner syndrome protein (WRN), but the exact stimulation mechanism is not understood. We use single-molecule FRET and magnetic tweezers to investigate the helicase activity of WRN and its stimulation by RPA. We show that WRN alone is a weak helicase which repetitively unwind just a few tens of base pairs, but that binding of multiple RPAs to the enzyme converts WRN into a superhelicase that unidirectionally unwinds double-stranded DNA more than 1 kb. Our study provides a good case in which the activity and biological functions of the enzyme may be fundamentally altered by the binding of cofactors.