A non-analytic growth bound for Laplace transforms and semigroups of operators
Let f : ℝ+ → ℂ be an exponentially bounded, measurable function. We introduce a growth bound ζ(f) which measures the extent to which f can be approximated by holomorphic functions. This growth bound is related to the location of the domain of holomorphy of the Laplace transform of f far from the rea...
Κύριοι συγγραφείς: | Batty, C, Blake, MD, Srivastava, S |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
2003
|
Παρόμοια τεκμήρια
-
Laplace transforms, non-analytic growth bounds and $C_{0}$-semigroups
ανά: Srivastava, S
Έκδοση: (2002) -
Bounded Laplace transforms, primitives and semigroup orbits
ανά: Batty, C
Έκδοση: (2003) -
The non-analytic growth bound of a C-0-semigroup and inhomogeneous Cauchy problems
ανά: Batty, C, κ.ά.
Έκδοση: (2003) -
Lower bounds for unbounded operators and semigroups
ανά: Batty, C, κ.ά.
Έκδοση: (2017) -
On the spectral and growth bound of semigroups associated with hyperbolic equations
ανά: Batty, C, κ.ά.
Έκδοση: (2005)