Parallel materialisation of datalog programs in centralised, main-memory RDF systems

We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient,...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Motik, B, Nenov, Y, Piro, R, Horrocks, I, Olteanu, D
বিন্যাস: Conference item
ভাষা:English
প্রকাশিত: Association for the Advancement of Artificial intelligence 2014
বিষয়গুলি:
বিবরন
সংক্ষিপ্ত:We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core.