Parallel materialisation of datalog programs in centralised, main-memory RDF systems

We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient,...

Повний опис

Бібліографічні деталі
Автори: Motik, B, Nenov, Y, Piro, R, Horrocks, I, Olteanu, D
Формат: Conference item
Мова:English
Опубліковано: Association for the Advancement of Artificial intelligence 2014
Предмети:
_version_ 1826317506737864704
author Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
author_facet Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
author_sort Motik, B
collection OXFORD
description We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core.
first_indexed 2024-03-06T22:30:07Z
format Conference item
id oxford-uuid:5800d74f-b9f6-4b12-9908-a45be70b29d2
institution University of Oxford
language English
last_indexed 2025-02-19T04:40:29Z
publishDate 2014
publisher Association for the Advancement of Artificial intelligence
record_format dspace
spelling oxford-uuid:5800d74f-b9f6-4b12-9908-a45be70b29d22025-02-18T15:18:03ZParallel materialisation of datalog programs in centralised, main-memory RDF systemsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:5800d74f-b9f6-4b12-9908-a45be70b29d2Artificial IntelligenceDatabasesKnowledge Representation and ReasoningComputer ScienceEnglishOxford University Research Archive - ValetAssociation for the Advancement of Artificial intelligence2014Motik, BNenov, YPiro, RHorrocks, IOlteanu, DWe present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core.
spellingShingle Artificial Intelligence
Databases
Knowledge Representation and Reasoning
Computer Science
Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title_full Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title_fullStr Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title_full_unstemmed Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title_short Parallel materialisation of datalog programs in centralised, main-memory RDF systems
title_sort parallel materialisation of datalog programs in centralised main memory rdf systems
topic Artificial Intelligence
Databases
Knowledge Representation and Reasoning
Computer Science
work_keys_str_mv AT motikb parallelmaterialisationofdatalogprogramsincentralisedmainmemoryrdfsystems
AT nenovy parallelmaterialisationofdatalogprogramsincentralisedmainmemoryrdfsystems
AT piror parallelmaterialisationofdatalogprogramsincentralisedmainmemoryrdfsystems
AT horrocksi parallelmaterialisationofdatalogprogramsincentralisedmainmemoryrdfsystems
AT olteanud parallelmaterialisationofdatalogprogramsincentralisedmainmemoryrdfsystems