Reverse Hardy–Littlewood–Sobolev inequalities

This paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentrat...

Full description

Bibliographic Details
Main Authors: Carrillo de la Plata, JA, Delgadino, MG, Dolbeault, J, Frank, RL, Hoffmann, F
Format: Journal article
Language:English
Published: Elsevier 2019
_version_ 1797069896506408960
author Carrillo de la Plata, JA
Delgadino, MG
Dolbeault, J
Frank, RL
Hoffmann, F
author_facet Carrillo de la Plata, JA
Delgadino, MG
Dolbeault, J
Frank, RL
Hoffmann, F
author_sort Carrillo de la Plata, JA
collection OXFORD
description This paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with free energy functionals and nonlinear diffusion equations involving mean field drifts.
first_indexed 2024-03-06T22:31:12Z
format Journal article
id oxford-uuid:5856ec39-de68-470e-9a2e-6fa4f799d78e
institution University of Oxford
language English
last_indexed 2024-03-06T22:31:12Z
publishDate 2019
publisher Elsevier
record_format dspace
spelling oxford-uuid:5856ec39-de68-470e-9a2e-6fa4f799d78e2022-03-26T17:02:43ZReverse Hardy–Littlewood–Sobolev inequalitiesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5856ec39-de68-470e-9a2e-6fa4f799d78eEnglishSymplectic ElementsElsevier2019Carrillo de la Plata, JADelgadino, MGDolbeault, JFrank, RLHoffmann, FThis paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with free energy functionals and nonlinear diffusion equations involving mean field drifts.
spellingShingle Carrillo de la Plata, JA
Delgadino, MG
Dolbeault, J
Frank, RL
Hoffmann, F
Reverse Hardy–Littlewood–Sobolev inequalities
title Reverse Hardy–Littlewood–Sobolev inequalities
title_full Reverse Hardy–Littlewood–Sobolev inequalities
title_fullStr Reverse Hardy–Littlewood–Sobolev inequalities
title_full_unstemmed Reverse Hardy–Littlewood–Sobolev inequalities
title_short Reverse Hardy–Littlewood–Sobolev inequalities
title_sort reverse hardy littlewood sobolev inequalities
work_keys_str_mv AT carrillodelaplataja reversehardylittlewoodsobolevinequalities
AT delgadinomg reversehardylittlewoodsobolevinequalities
AT dolbeaultj reversehardylittlewoodsobolevinequalities
AT frankrl reversehardylittlewoodsobolevinequalities
AT hoffmannf reversehardylittlewoodsobolevinequalities