Reverse Hardy–Littlewood–Sobolev inequalities
This paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentrat...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2019
|
_version_ | 1797069896506408960 |
---|---|
author | Carrillo de la Plata, JA Delgadino, MG Dolbeault, J Frank, RL Hoffmann, F |
author_facet | Carrillo de la Plata, JA Delgadino, MG Dolbeault, J Frank, RL Hoffmann, F |
author_sort | Carrillo de la Plata, JA |
collection | OXFORD |
description | This paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with free energy functionals and nonlinear diffusion equations involving mean field drifts. |
first_indexed | 2024-03-06T22:31:12Z |
format | Journal article |
id | oxford-uuid:5856ec39-de68-470e-9a2e-6fa4f799d78e |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:31:12Z |
publishDate | 2019 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:5856ec39-de68-470e-9a2e-6fa4f799d78e2022-03-26T17:02:43ZReverse Hardy–Littlewood–Sobolev inequalitiesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5856ec39-de68-470e-9a2e-6fa4f799d78eEnglishSymplectic ElementsElsevier2019Carrillo de la Plata, JADelgadino, MGDolbeault, JFrank, RLHoffmann, FThis paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and the properties of the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with free energy functionals and nonlinear diffusion equations involving mean field drifts. |
spellingShingle | Carrillo de la Plata, JA Delgadino, MG Dolbeault, J Frank, RL Hoffmann, F Reverse Hardy–Littlewood–Sobolev inequalities |
title | Reverse Hardy–Littlewood–Sobolev inequalities |
title_full | Reverse Hardy–Littlewood–Sobolev inequalities |
title_fullStr | Reverse Hardy–Littlewood–Sobolev inequalities |
title_full_unstemmed | Reverse Hardy–Littlewood–Sobolev inequalities |
title_short | Reverse Hardy–Littlewood–Sobolev inequalities |
title_sort | reverse hardy littlewood sobolev inequalities |
work_keys_str_mv | AT carrillodelaplataja reversehardylittlewoodsobolevinequalities AT delgadinomg reversehardylittlewoodsobolevinequalities AT dolbeaultj reversehardylittlewoodsobolevinequalities AT frankrl reversehardylittlewoodsobolevinequalities AT hoffmannf reversehardylittlewoodsobolevinequalities |