Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps.
Nonlinear independent component analysis is combined with diffusion-map data analysis techniques to detect good observables in high-dimensional dynamic data. These detections are achieved by integrating local principal component analysis of simulation bursts by using eigenvectors of a Markov matrix...
Main Authors: | Singer, A, Erban, R, Kevrekidis, I, Coifman, R |
---|---|
格式: | Journal article |
語言: | English |
出版: |
2009
|
相似書籍
-
Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps
由: Singer, A, et al.
出版: (2009) -
Variable-free exploration of stochastic models: a gene regulatory network example.
由: Erban, R, et al.
出版: (2007) -
ADM-CLE approach for detecting slow variables in continuous time Markov chains and dynamic data
由: Cucuringu, M, et al.
出版: (2017) -
ADM-CLE approach for detecting slow variables in continuous time Markov
chains and dynamic data
由: Cucuringu, M, et al.
出版: (2015) -
A constrained approach to multiscale stochastic simulation of chemically reacting systems.
由: Cotter, S, et al.
出版: (2011)