The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort

<br><strong>Background<br></strong> The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify...

Full description

Bibliographic Details
Main Authors: Nowakowska, M, Zghebi, SS, Ashcroft, DM, Buchan, I, Chew-Graham, C, Holt, T, Mallen, C, Van Marwijk, H, Peek, N, Perera-Salazar, R, Reeves, D, Rutter, MK, Weng, SF, Qureshi, N, Mamas, MA, Kontopantelis, E
Format: Journal article
Language:English
Published: BMC 2019
_version_ 1826273817574506496
author Nowakowska, M
Zghebi, SS
Ashcroft, DM
Buchan, I
Chew-Graham, C
Holt, T
Mallen, C
Van Marwijk, H
Peek, N
Perera-Salazar, R
Reeves, D
Rutter, MK
Weng, SF
Qureshi, N
Mamas, MA
Kontopantelis, E
author_facet Nowakowska, M
Zghebi, SS
Ashcroft, DM
Buchan, I
Chew-Graham, C
Holt, T
Mallen, C
Van Marwijk, H
Peek, N
Perera-Salazar, R
Reeves, D
Rutter, MK
Weng, SF
Qureshi, N
Mamas, MA
Kontopantelis, E
author_sort Nowakowska, M
collection OXFORD
description <br><strong>Background<br></strong> The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify comorbidity patterns in people with T2DM, to estimate the prevalence of six chronic conditions in 2027 and to identify clusters of similar conditions. <br><strong> Methods<br></strong> We used the Clinical Practice Research Datalink (CPRD) linked with the Index of Multiple Deprivation (IMD) data to identify patients diagnosed with T2DM between 2007 and 2017. 102,394 people met the study inclusion criteria. We calculated the crude and age-standardised prevalence of 18 chronic conditions present at and after the T2DM diagnosis. We analysed longitudinally the 6 most common conditions and forecasted their prevalence in 2027 using linear regression. We used agglomerative hierarchical clustering to identify comorbidity clusters. These analyses were repeated on subgroups stratified by gender and deprivation. <br><strong> Results<br></strong> More people living in the most deprived areas had ≥ 1 comorbidities present at the time of diagnosis (72% of females; 64% of males) compared to the most affluent areas (67% of females; 59% of males). Depression prevalence increased in all strata and was more common in the most deprived areas. Depression was predicted to affect 33% of females and 15% of males diagnosed with T2DM in 2027. Moderate clustering tendencies were observed, with concordant conditions grouped together and some variations between groups of different demographics. <br><strong> Conclusions<br></strong> Comorbidities are common in this population, and high between-patient variability in comorbidity patterns emphasises the need for patient-centred healthcare. Mental health is a growing concern, and there is a need for interventions that target both physical and mental health in this population.
first_indexed 2024-03-06T22:33:59Z
format Journal article
id oxford-uuid:593b8e83-7f90-49a2-be99-d41fda1d62fd
institution University of Oxford
language English
last_indexed 2024-03-06T22:33:59Z
publishDate 2019
publisher BMC
record_format dspace
spelling oxford-uuid:593b8e83-7f90-49a2-be99-d41fda1d62fd2022-03-26T17:08:47ZThe comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohortJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:593b8e83-7f90-49a2-be99-d41fda1d62fdEnglishSymplectic ElementsBMC2019Nowakowska, MZghebi, SSAshcroft, DMBuchan, IChew-Graham, CHolt, TMallen, CVan Marwijk, HPeek, NPerera-Salazar, RReeves, DRutter, MKWeng, SFQureshi, NMamas, MAKontopantelis, E<br><strong>Background<br></strong> The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify comorbidity patterns in people with T2DM, to estimate the prevalence of six chronic conditions in 2027 and to identify clusters of similar conditions. <br><strong> Methods<br></strong> We used the Clinical Practice Research Datalink (CPRD) linked with the Index of Multiple Deprivation (IMD) data to identify patients diagnosed with T2DM between 2007 and 2017. 102,394 people met the study inclusion criteria. We calculated the crude and age-standardised prevalence of 18 chronic conditions present at and after the T2DM diagnosis. We analysed longitudinally the 6 most common conditions and forecasted their prevalence in 2027 using linear regression. We used agglomerative hierarchical clustering to identify comorbidity clusters. These analyses were repeated on subgroups stratified by gender and deprivation. <br><strong> Results<br></strong> More people living in the most deprived areas had ≥ 1 comorbidities present at the time of diagnosis (72% of females; 64% of males) compared to the most affluent areas (67% of females; 59% of males). Depression prevalence increased in all strata and was more common in the most deprived areas. Depression was predicted to affect 33% of females and 15% of males diagnosed with T2DM in 2027. Moderate clustering tendencies were observed, with concordant conditions grouped together and some variations between groups of different demographics. <br><strong> Conclusions<br></strong> Comorbidities are common in this population, and high between-patient variability in comorbidity patterns emphasises the need for patient-centred healthcare. Mental health is a growing concern, and there is a need for interventions that target both physical and mental health in this population.
spellingShingle Nowakowska, M
Zghebi, SS
Ashcroft, DM
Buchan, I
Chew-Graham, C
Holt, T
Mallen, C
Van Marwijk, H
Peek, N
Perera-Salazar, R
Reeves, D
Rutter, MK
Weng, SF
Qureshi, N
Mamas, MA
Kontopantelis, E
The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title_full The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title_fullStr The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title_full_unstemmed The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title_short The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
title_sort comorbidity burden of type 2 diabetes mellitus patterns clusters and predictions from a large english primary care cohort
work_keys_str_mv AT nowakowskam thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT zghebiss thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT ashcroftdm thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT buchani thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT chewgrahamc thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT holtt thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT mallenc thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT vanmarwijkh thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT peekn thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT pererasalazarr thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT reevesd thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT ruttermk thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT wengsf thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT qureshin thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT mamasma thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT kontopantelise thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT nowakowskam comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT zghebiss comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT ashcroftdm comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT buchani comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT chewgrahamc comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT holtt comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT mallenc comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT vanmarwijkh comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT peekn comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT pererasalazarr comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT reevesd comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT ruttermk comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT wengsf comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT qureshin comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT mamasma comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort
AT kontopantelise comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort