The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort
<br><strong>Background<br></strong> The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
BMC
2019
|
_version_ | 1826273817574506496 |
---|---|
author | Nowakowska, M Zghebi, SS Ashcroft, DM Buchan, I Chew-Graham, C Holt, T Mallen, C Van Marwijk, H Peek, N Perera-Salazar, R Reeves, D Rutter, MK Weng, SF Qureshi, N Mamas, MA Kontopantelis, E |
author_facet | Nowakowska, M Zghebi, SS Ashcroft, DM Buchan, I Chew-Graham, C Holt, T Mallen, C Van Marwijk, H Peek, N Perera-Salazar, R Reeves, D Rutter, MK Weng, SF Qureshi, N Mamas, MA Kontopantelis, E |
author_sort | Nowakowska, M |
collection | OXFORD |
description | <br><strong>Background<br></strong>
The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify comorbidity patterns in people with T2DM, to estimate the prevalence of six chronic conditions in 2027 and to identify clusters of similar conditions.
<br><strong>
Methods<br></strong>
We used the Clinical Practice Research Datalink (CPRD) linked with the Index of Multiple Deprivation (IMD) data to identify patients diagnosed with T2DM between 2007 and 2017. 102,394 people met the study inclusion criteria. We calculated the crude and age-standardised prevalence of 18 chronic conditions present at and after the T2DM diagnosis. We analysed longitudinally the 6 most common conditions and forecasted their prevalence in 2027 using linear regression. We used agglomerative hierarchical clustering to identify comorbidity clusters. These analyses were repeated on subgroups stratified by gender and deprivation.
<br><strong>
Results<br></strong>
More people living in the most deprived areas had ≥ 1 comorbidities present at the time of diagnosis (72% of females; 64% of males) compared to the most affluent areas (67% of females; 59% of males). Depression prevalence increased in all strata and was more common in the most deprived areas. Depression was predicted to affect 33% of females and 15% of males diagnosed with T2DM in 2027. Moderate clustering tendencies were observed, with concordant conditions grouped together and some variations between groups of different demographics.
<br><strong>
Conclusions<br></strong>
Comorbidities are common in this population, and high between-patient variability in comorbidity patterns emphasises the need for patient-centred healthcare. Mental health is a growing concern, and there is a need for interventions that target both physical and mental health in this population. |
first_indexed | 2024-03-06T22:33:59Z |
format | Journal article |
id | oxford-uuid:593b8e83-7f90-49a2-be99-d41fda1d62fd |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:33:59Z |
publishDate | 2019 |
publisher | BMC |
record_format | dspace |
spelling | oxford-uuid:593b8e83-7f90-49a2-be99-d41fda1d62fd2022-03-26T17:08:47ZThe comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohortJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:593b8e83-7f90-49a2-be99-d41fda1d62fdEnglishSymplectic ElementsBMC2019Nowakowska, MZghebi, SSAshcroft, DMBuchan, IChew-Graham, CHolt, TMallen, CVan Marwijk, HPeek, NPerera-Salazar, RReeves, DRutter, MKWeng, SFQureshi, NMamas, MAKontopantelis, E<br><strong>Background<br></strong> The presence of additional chronic conditions has a significant impact on the treatment and management of type 2 diabetes (T2DM). Little is known about the patterns of comorbidities in this population. The aims of this study are to quantify comorbidity patterns in people with T2DM, to estimate the prevalence of six chronic conditions in 2027 and to identify clusters of similar conditions. <br><strong> Methods<br></strong> We used the Clinical Practice Research Datalink (CPRD) linked with the Index of Multiple Deprivation (IMD) data to identify patients diagnosed with T2DM between 2007 and 2017. 102,394 people met the study inclusion criteria. We calculated the crude and age-standardised prevalence of 18 chronic conditions present at and after the T2DM diagnosis. We analysed longitudinally the 6 most common conditions and forecasted their prevalence in 2027 using linear regression. We used agglomerative hierarchical clustering to identify comorbidity clusters. These analyses were repeated on subgroups stratified by gender and deprivation. <br><strong> Results<br></strong> More people living in the most deprived areas had ≥ 1 comorbidities present at the time of diagnosis (72% of females; 64% of males) compared to the most affluent areas (67% of females; 59% of males). Depression prevalence increased in all strata and was more common in the most deprived areas. Depression was predicted to affect 33% of females and 15% of males diagnosed with T2DM in 2027. Moderate clustering tendencies were observed, with concordant conditions grouped together and some variations between groups of different demographics. <br><strong> Conclusions<br></strong> Comorbidities are common in this population, and high between-patient variability in comorbidity patterns emphasises the need for patient-centred healthcare. Mental health is a growing concern, and there is a need for interventions that target both physical and mental health in this population. |
spellingShingle | Nowakowska, M Zghebi, SS Ashcroft, DM Buchan, I Chew-Graham, C Holt, T Mallen, C Van Marwijk, H Peek, N Perera-Salazar, R Reeves, D Rutter, MK Weng, SF Qureshi, N Mamas, MA Kontopantelis, E The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title | The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title_full | The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title_fullStr | The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title_full_unstemmed | The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title_short | The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort |
title_sort | comorbidity burden of type 2 diabetes mellitus patterns clusters and predictions from a large english primary care cohort |
work_keys_str_mv | AT nowakowskam thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT zghebiss thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT ashcroftdm thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT buchani thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT chewgrahamc thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT holtt thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT mallenc thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT vanmarwijkh thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT peekn thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT pererasalazarr thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT reevesd thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT ruttermk thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT wengsf thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT qureshin thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT mamasma thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT kontopantelise thecomorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT nowakowskam comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT zghebiss comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT ashcroftdm comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT buchani comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT chewgrahamc comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT holtt comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT mallenc comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT vanmarwijkh comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT peekn comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT pererasalazarr comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT reevesd comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT ruttermk comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT wengsf comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT qureshin comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT mamasma comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort AT kontopantelise comorbidityburdenoftype2diabetesmellituspatternsclustersandpredictionsfromalargeenglishprimarycarecohort |