Branching Brownian motion, mean curvature flow and the motion of hybrid zones
We provide a probabilistic proof of a well known connection between a special case of the Allen-Cahn equation and mean curvature flow. We then prove a corresponding result for scaling limits of the spatial Λ-Fleming-Viot process with selection, in which the selection mechanism is chosen to model wha...
主要な著者: | Etheridge, A, Freeman, N, Penington, S |
---|---|
フォーマット: | Journal article |
出版事項: |
Institute of Mathematical Statistics
2017
|
類似資料
-
Branching Brownian motion and selection in the spatial $\Lambda$-Fleming-Viot process
著者:: Etheridge, A, 等
出版事項: (2017) -
Branching stable processes and motion by mean curvature flow
著者:: Becker, K, 等
出版事項: (2024) -
Branching Brownian motion with decay of mass and the nonlocal Fisher-KPP equation
著者:: Berestycki, J, 等
出版事項: (2019) -
Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift
著者:: Berestycki, J, 等
出版事項: (2017) -
A free boundary problem arising from branching Brownian motion with selection
著者:: Berestycki, J, 等
出版事項: (2021)