Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations.
The purpose of neuroimaging meta-analysis is to localize the brain regions that are activated consistently in response to a certain intervention. As a commonly used technique, current coordinate-based meta-analyses (CBMA) of neuroimaging studies utilize relatively sparse information from published s...
Auteurs principaux: | Salimi-Khorshidi, G, Nichols, T, Smith, S, Woolrich, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2011
|
Documents similaires
-
Statistical models for neuroimaging meta-analytic inference
par: Salimi-Khorshidi, G
Publié: (2011) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
par: Salimi-Khorshidi, G, et autres
Publié: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
par: Salimi-Khorshidi, G, et autres
Publié: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
par: Salimi-Khorshidi, G, et autres
Publié: (2009) -
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.
par: Salimi-Khorshidi, G, et autres
Publié: (2009)