Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions

The faradaic impedance for an electrode mechanism with a reversible homogeneous dimerization reaction following the electron transfer step is derived. The chemical reaction shows up in the frequency dependence of the faradaic impedance and admittance in a similar way as deduced by Sluyters-Rehbach a...

ver descrição completa

Detalhes bibliográficos
Main Authors: Rueda, M, Compton, R, Alden, J, Prieto, F
Formato: Journal article
Idioma:English
Publicado em: 1998
Descrição
Resumo:The faradaic impedance for an electrode mechanism with a reversible homogeneous dimerization reaction following the electron transfer step is derived. The chemical reaction shows up in the frequency dependence of the faradaic impedance and admittance in a similar way as deduced by Sluyters-Rehbach and Sluyters (J. Electroanal. Chem. 23 (1989) 457; J. Electroanal. Chem. 26 (1990) 237) for a homogeneous first-order chemical reaction. Two limiting cases can be distinguished in which the general expression reduces to the simpler Randles or pseudo-Randles expression. Under those conditions, the presence of the dimerization reaction can be inferred from the potential dependence of the impedance parameters. The theory is applied to the reduction of the methyl viologen di-cation at mercury electrodes in aqueous solution. The rate and the equilibrium constants for the dimerization reaction and the standard potential for the electron transfer step are obtained from the Warburg coefficient, while the potential dependence of the irreversibility coefficient allows the calculation of the standard rate constant and the transfer coefficient for the electron transfer step. © 1998 Elsevier Science S.A. All rights reserved.