SYNCHRONOUS MACHINE STABILITY USING COMPOSITE GOVERNOR AND VOLTAGE REGULATOR MODELS

Most designers neglect the effect of the governor loop when selecting a suitable voltage regulator transfer function and gain of a turbo-generator. However, with modern fast acting governors, this could lead to unwanted interloop interference and oscillations. This paper investigates the steady stat...

Full description

Bibliographic Details
Main Authors: Limebeer, D, Harley, R
Format: Journal article
Language:English
Published: 1978
Description
Summary:Most designers neglect the effect of the governor loop when selecting a suitable voltage regulator transfer function and gain of a turbo-generator. However, with modern fast acting governors, this could lead to unwanted interloop interference and oscillations. This paper investigates the steady state and transient stability limits of such a synchronous turbo-generator using analogue governor and voltage regulator loops similar to those found on large machines (30 - 750 MW). It proposes a design technique which optimizes the gains of the two loops on the basis of maximum steady state stability. Results obtained by measurement on a special micro-machine laboratory simulation are presented. These agree closely with predicted values based upon the well-known two-axis theory of synchronous machines. © 1978.