Neural ordinary differential equations for ecological and evolutionary time‐series analysis
Inferring the functional shape of ecological and evolutionary processes from time-series data can be challenging because processes are often not describable with simple equations. The dynamical coupling between variables in time series further complicates the identification of equations through mode...
Автори: | Bonnaffé, W, Sheldon, BC, Coulson, T |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Wiley
2021
|
Схожі ресурси
Схожі ресурси
-
Fast fitting of neural ordinary differential equations by Bayesian neural gradient matching to infer ecological interactions from time‐series data
за авторством: Willem Bonnaffé, та інші
Опубліковано: (2023-06-01) -
Inferring eco-evolutionary feedbacks from time series data using neural ordinary differential equations
за авторством: Bonnaffé, W
Опубліковано: (2022) -
Fast fitting of neural ordinary differential equations by Bayesian neural gradient matching to infer ecological interactions from time‐series data
за авторством: Bonnaffee, W, та інші
Опубліковано: (2023) -
From time series analysis to a modified ordinary differential equation
за авторством: Meiyu Xue, та інші
Опубліковано: (2018-06-01) -
Stiff neural ordinary differential equations
за авторством: Kim, Suyong, та інші
Опубліковано: (2021)